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Dielectric spectra from 200 MHz up to 3 THz were determined to study the fast dynamics of dilutetwater
1,4-dioxaneé(v) could be fitted by a collision induced oscillator at high frequencies plus two Debye relaxations

in the microwave region. Isotope substitution was used to assign water and dioxane modes. The presence of
the cooperative hydrogen-bond network relaxation down to a water mole fraction of 0.005 suggests a
microheterogeneous structure of the mixtures even at low water content. The collision mode of dioxane at
~2 THz grows upon water addition, revealing the presencef kiolecules in dioxane-rich domains.

Introduction Experimental Methods

Fast cooperative dynamics in water and other strongly —1.4-Dioxane (DX, Merck, Germany; analytical grade, 99.97
associated hydrogen-bonding (H-bonding) liquids is not only Mol %) for the preparation of the mixtures was distilled after
of fundamental importance for aqueous chemistry but also of drying with calcium h){d”dQ yielding kO traces<30 ppm.
major interest in protein research and bioldgwith many ~ For measurements with pure DX, UV spectroscopic grade
implications for living organisms as well as for artificial ~Material (Fluka, Switzerland) was extensively driedl6 ppm
nanostructured systerd8 Although H-bond dynamics in neat  H20) and then distilled and handled under dry Rerdeuterated
water and near hydrophobic molecules is reasonably well 1.4-Dioxaneds (DX-ds, Cambridge Isotope Laboratories, USA;
understood; 7 the molecular picture of cooperativity and iSOtope enrichment 99.2%) was dried over activated 4 A
microheterogeneity in mixtures remains limitedspecially at molecular sieves. High-purity water (Millipore Milli-Q system)
the rather low free water concentrations found in moderately Was used throughout. Deuterium oxide (Euriso-top, France;
polar (eg., biological) environments. The dielectric relaxation SOtope enrichment99.9%) was used as received. Mixtures
of liquids in the high gigahertz to terahertz (far-infrared, FIR) Were prepared gravimetrically without buoyancy correction and
range of the electromagnetic spectrum is particularly useful for checked by qul Fischer titration. Concentratlon.s were gxpressed
probing dipolar entities, be it individual molecules or clustets. as mass fraction of watew;, and as mole fraction of dioxane
However, due to the experimental difficulties associated with (2) H-bond acceptor siteso = 2xo/(1 + o).
spectroscopy in this region, most studies suffer from insufficient _All Spectra were recorded at 250.1°C. FDR measurements
frequency coverage, which is crucial for a detailed analysis of (0-2-20 GHz) were performed with a Hewlett-Packard (HP)
the spectra! Recent technological advanégand improvement ~ medel 85070M dielectric probe system and corrected for
of existing methods make this field now more accessiBg. callbrat|on_ errors by the methoc_i de_scrlbed elsewhtle data
combination of frequency-domain reflectometry (FDR), travel- Were obtained with two waveguide interferometers £47GHz

ling-wave interferometry (IF), and terahertz time-domain spec- =32 and 60=v/GHz <89} and supplemented by literature

troscopy (THz-TDS) we obtained data over virtually the entire dat"’_"ls The_terahertz setup covering 6.3 THZI®!" was
dielectric spectrumi(v) = €(v) — i€"(v) (frequency v, equipped with a Teflon-windowed cell where the sample path

permittivity €', dielectric losse'"), relevant for intermolecular length was set to 1.5 or 2.3 mm bY spacers made of gold plated,
interactions. Dioxane (DX} water was selected as a model hardened steel. To account for drift, each samplg measurement
system because DX is fully miscible with water despite was bracketed by two reference measurements with dry nitrogen

negligible polarity (static relative permittivity = lim, .o €' = from which the actual path length was obtainedttum using

2.2095). Dioxane may act as an H-bond acceptor but does notthe reflections at the gas/window interfaces.

form aggregates with other dioxane molecules due to lacking . .

H-bond donor sites. Results and Discussion

Neat Dioxane. The dielectric spectra of DX and DHg
*To whom correspondence should be addressed. E-mail: (Figure 1) were determined with THz-TDS and IF experiments

richlard.buchner@cherrge~uni-regenSbUfg~de- in the frequency range 68v/GHz <3000. For DX the power
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* Current address: Richmond Lab, University of Oregon, 210 Willamette absorpt|o,r,1 coefficienty, shows a maximum ar1.98 T.HZ (Figure

Hall, Eugene, OR 97403. lp) _ande _(v) peaks at~1.5 THz (Figure 1c). Additionally, a
8 Albert-Ludwigs-Universita Freiburg. minimum is observed foe'(v) (not shown) as well as for the
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dielectric loss (symbols) of dioxane (c) and dioxafdd) with the fit, eq 1.
term @pbro). The isotope shift in the peak frequenciesoofind the DHO t

refractive indexn, at~2.6THz (Figure 1a, see also Figure 5b).
These results agree with an early Fourier transform interfer-
ometry study of liquid DX in the FIR by Davies et #who
concluded from the band shape that this mode is intermolecular
(the lowest intramolecular vibration is @230 cn! 19 and of
resonance origin, arising from collision-induced dipoles. This
terahertz absorption is similar in peak frequency but not in band
shape to the unassigned low-frequency Raman band of°DX.

To a first approximation, the collision frequency of molecules
in a liquid is proportional to their mean molecular velocity,
determined by thermal energy and molecular massThis
should be especially true for molecules that differ only in
isotopic composition. Because ~ (3kgT)/(2m), the maximum
of the dielectric loss of DXdg should be shifted to lower
frequencies by a factor of = ,/m;/m, = 0.957 compared
with that of DX. From the experimental’(v) (Figure 1c,d) a
ratio of the peak frequencies of,{¢"') = 0.95+ 0.01 was
obtained by graphical evaluation. The peak frequencies of the
power absorption coefficient (Figure 1bnaxp, = 1.98 THz,
Vmaxds = 1.90 THZz), yielded an isotope effect pfh{o) = 0.96
+ 0.01, whereas for the damped harmonic oscillator mode
(DHO) fitted to the high-frequency part ef'(v) (see below,
markedrppo in Figure 1c¢,dYop{DHO) = 0.94 is obtained. Our
experimental results are in excellent agreement with the isotope
effect predicted for intermolecular collisions and thus confirm
the previous assignméfitof the 2 THz mode of DX to an
intermolecular vibration.

The dielectric spectra of pure DX and Dd-are best fitted
by the sum of a low-frequency Debye equation and a damped
harmonic oscillator term (DHO), eq 1. The DHO contribution,

. (e2 — €Jog’
T ltien (02— 0+ oty
w=2mv (1)

€7 €

€(w) =¢

describing the intermolecular vibrations-a2 THz, dominates
€(v). However, a small-amplitude contribution (for both, DX
and DXdg: S = 1 — e ~ 0.03;7; = 0.533 ps) at low
frequencies is evident from the experimental data. Dioxane is
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Figure 1. Terahertz refractive index (a) and absorption coefficient (b) of dioxane (1) and didxé2)eat 298 K. (c) and (d) compare the experimental

2000
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Figure 2. Fit curves (lines) of dielectric permittivity (a) and loss (b)
spectra of watei+ dioxane mixtures at 298 K and water mass fractions
w; =0, 0.0051, 0.0089, 0.0161, 0.0203, 0.0249, 0.0355, 0.0395, 0.0448,
and 0.0486 (bottom to top). For representational clarity experimental
data (symbols) are only shown for full-range spectra £ 0.0051,
0.0249, and 0.0486).

a flexible molecule with several conformers but NMR stugfies
and calculatior® suggest that in the liquid at ambient temper-
atures the interconversion between the nonpolar chair and the
two dipolar boat conformers is slow. Thus, it is reasonable to
assign the slow relaxation to the rotational diffusion of a small
amount of dipolar conformers, like the boat or twisted boat (both
havingu ~ 2D?%), present in liquid DX besides the dominating
nonpolar chair conformer. The relaxation time of such polar
conformers is difficult to predict because they are nearly
spherical and thus have small friction coefficients for rotatton
but comparison with similar molecules suggests a value-&f 1
ps25 Keeping in mind the roughness of this estimation and the
limited low-frequency coverage @fv) the agreement with the
experimentalr; is fair enough to support our assignment. In
any case, the small magnitude 8f and the absence of any
other dielectric relaxation at lower frequencies indicate that the
fraction of dipolar DX conformers is 1% and thus the average
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= 0.0486, 0.0249, and 0.005%\) was determined over the
entire frequency range of 02v/GHz <2000-3000, whereas
for the remaining samples of Figure 2 only terahertz spectra
were recorded. The full-range spectra were fitted by a combina-
tion of two Debye equations and a DHO term (i.e., eq 1 with
an additional Debye term; see Figure 3) with the static
permittivity, ¢, fixed to interpolated literature datd.The fit
parameterss, €, 72, andez were found to be smooth functions
of the mole fractiorxo 2 (Figure 4). This allowed interpolation
of €, 71, €2, andr, to the concentrations of the remaining samples
and to fit theire(v) with only €3, 7o, wo, and e, adjustable.
Figure 4 shows that the obtained parameters are of good quality.
Dielectric relaxation studies over the entire DX-water com-
position rang® show that the low-frequency Debye mode
(relaxation timer; = 8.4 ps for neat KD’) can be assigned to
the cooperative relaxation of the hydrogen-bond network of
water. Its amplitude S, increases rapidly with rising water
content, Figure 4a. According to molecular dynamics simulations
this relaxation is caused by water aggregates comprising 10
40 molecules®31 Addition of a component like dioxane, which
may act as an H-bond acceptor but not as a donor, should have
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Figure 3. Experimental dielectric loss spectra (symbols) and fits (lines)
of water+ dioxane mixtures atv; = 0.0486 (1), 0.0249 (2), 0.0051
(3), and 0 (4, fit only). The shaded areas show the contributions of the

cooperative water relaxatiomJ, the secondary relaxatiom, and the large effects on the H-bond network relaxation by modifying

damped harmonic oscillator modenfo) of dioxane. the size distribution and environment of the water clusters.
Indeed, already at the dilute water solutiorkgh = 0.95, where

dipole moment of DX molecules in the liquid= 0.06+ 0.1 95 out of 100 hydrogen-bond acceptor sites beong to dioxane

D. Larger values occasionally given in the literaturey(e0.45 molecules;r; is longer than in pure water (Figure 4b).
D29) result from neglecting the DHO mode in the THz region Strong watetr-dioxane interactions, invoking even the forma-
and erroneously ascribing the entire difference between statiction of more or less stable hydrates, were often held responsible
permittivity and the square of the refractive index at optical for the peculiar thermodynamic properties of B¥ater
frequencies to the rotational diffusion of permanent dipoles. Our mixtures. However, the wateether oxygen hydrogen bond is
findings also resolve the disagreement among recent ab initioweak compared with the watewater H-bond? Therefore, the
calculations regarding the importance of dipolar conformers in large local energy fluctuations in liquid water of up to 60 kJ/
liquid DX.27:28 mol (ca. 5 times the H-bond strength§! are in variance with
Dilute Solutions of Water in 1,4-Dioxane.The admixture the assumption of stable DXH,O aggregates in aqueous
of water to neat DX causes a large increase of the absorptionmixtures. The large amplitud®, as well as the long; suggest
coefficient. This reduces the bandwidth of the THz spectrometer that the cooperative H-bond mode is preserved even at our
to 0.3-2 THz for the highest water content of this study and lowest water concentratioryvy = 0.005, possibly by the
prevents measurements at water mass fractiaris 0.05. For formation of water clusters which are stiffened due to the
three samples¢o > = 0.89, 0.94, and 0.99 (correspondingap reduced number of accessible H-bond configurations compared
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Figure 4. (a) Limiting permittivites € (1), €2 (2), €3 (3), €« (4)) and (b) characteristic times,((1), 72 (2), oo (4)), respectively, and DHO shape
parametersdo (3)) of water+ dioxane mixtures at 298 K as a function of the dioxane-specific H-bond acceptor mole fragtiobines for rpno
andwg are only guide to the eye.
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The presented data show that the DHO mode of DX acts as
a probe for the presence of water molecules. From the values
of oo andwo (Figure 4b) it can be concluded that already for
water contents as low ag ~ 0.009 o~ 0.98) all dioxane
molecules experience the presence @DHlipoles. Simulta-
neously, the cooperative relaxation of water-rich domains also
already appears at this surprisingly law.
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Figure 5. Spectra of dielectric loss (a) and permittivity (b) of@—+
dioxane at 298 K and D weight fractionsnv; = 0, 0.0028, 0.0042, References and Notes
0.0097, 0.0196, 0.0301, 0.0397, 0.0496 (solid line, bottom to top).
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¥o ' 2005 72, 051903
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